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Introduction

Cardiovascular diseases cause the majority of deaths in 
the developed countries. They are strongly interlinked 
with hemodynamics of the cardiovascular system (CS); 
thus it is important to study blood flow under normal and 
pathological conditions. Hemodynamic models of CS 
can be classified as lumped parameter, one-dimensional, 
two-dimensional and three-dimensional models. The 
simplest lumped parameter models are attractive for te-
aching purposes as well as for clinicians, since they des-
cribe the whole CS with a small number of parameters 
(in terms of compliance, resistance and inertance) having 
a clear physiological meaning. The results of such a mo-
del include pressure and volume time variations of ob-
served compartments and also flow rates between com-
partments (arterial and vein trees are considered as 
compartments, too). Upgraded with a short-term regula-
tory system model (arterial baroreflex system, cardiopul-
monary baroreflex system and neural control of the heart 
rate) and resting physiologic perturbations model, the 
resulting lumped parameter model is capable of genera-
ting pretty realistic results, and can be used for the rese-
arch on the CS [1,2]. In the CVsim model [2] six com-
partments are used for the teaching version and 21 
compartments in the research version, while the CircA-
dapt model [3] consists of eight compartments. The 
valves are considered to be ideal check valves in most 
models, and valve dynamics is modeled in [4]. A lumped 
model of the heart was developed in combination with 
one-dimensional model of blood vessel tree [5], and furt-
her there is a model with oxygen transport [6].
The goal of this work is to develop a simple hydrodyna-
mic lumped parameter model of the cardiovascular 
system which can realistically describe time varying pre-
ssure in system compartments and flows through the 
valves in the given physiological state of the system. The 
model includes four heart compartments (left and right 
atria and ventricles) and systemic and pulmonary circu-
lation (modeled by arterial and venous compartments). 
Heart contractility is modeled by time varying elastance 
[7] (frequently defined as the universal one for all subje-
cts) in most existing models, while in this work the for-
mulation with activation function is used for this purpo-
se. Activation function is defined by parameters that can 
be obtained by Doppler Echocardiography specifically 
for each subject.

Mathematical model

A simplified CS (Fig. 1) is reduced to a system of eight 
chambers, as follows: pulmonary veins (PV), left atrium 
(LA), left ventricle (LV), systemic arteries (SA), syste-

mic veins (SV), right atrium (RA), right ventricle (RV) 
and pulmonary artery (PA). Each chamber is characteri-
zed by volume (V ) and pressure ( p ), while the blood 
flowrate ( Q ) is defined by eight connections between 
the chambers. These eight connections are: entrance 
from pulmonary veins into the left atrium (la), mitral 
valve (mv), aortic valve (av), systemic capillaries (sc), 
entrance to the right atrium (ra), tricuspid valve (tv), pul-
monary valve (pv) and pulmonary capillaries (pc). For 
the sake of simplicity, it is assumed that pressure distur-
bances spread at infinite speed, resulting in uniform pre-

Fig. 1. Scheme of the cardiovascular system consisting of eight 
chambers and eight interconnections. Abbreviations: PV/SV = 
pulmonary/systemic veins, LA/RA = left/right atrium, LV/RV
= left/right ventricle, SA/PA = systemic/pulmonary arteries, 
sc/pc = systemic/pulmonary capillaries, mv = mitral valve, av = 

aortic valve, tv = tricuspid valve, pv = pulmonary valve
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ssure in each chamber is uniform. Arteries and veins are 
considered to be passive chambers (not adding energy to 
the blood flow), and the left and right heart chambers 
(atria and ventricles) are active chambers that add ener-
gy to the blood flow by their contraction. Blood is con-
sidered to be an incompressible fluid of constant density
ρ=1050 kg/m3 .

The continuity equation defines the rate of chamber vo-
lume change:

	
d
d in out
V
t

Q Q= − ,	 (1)

where Qin  and Qout  are the inlet and outlet flow rate, 
respectively. For example, for pulmonary veins (PV) in 
Fig. 1 the continuity equation reads: d dPV pc PVV t Q Q/ ,= −  
for the left atrium (LA) it is: d dLA la mvV t Q Q/ = − , and 
so on. Flow rate between two chambers is defined by the 
modified Bernoulli equation, which in the case of lami-
nar fluid flow through the pipe of length L  and diame-
ter D , takes the form:

	 M
Q
t

p p RQ rQ
d
d in out= − − − 2 ,	 (2)

where M  is inertance coefficient, M L A= ρ /  
( A D= 2 4π / ), R L D= ( )32 4µ π/ , m is blood viscosity, 
r K D= ( )8 4 2ρ π/ , and K  is minor loss coefficient. It 
is convenient to neglect minor losses ( r0 ) for the 
flows through systemic and pulmonary capillaries where 
friction losses are large, while friction loses are negligi-
ble ( R0 ) with respect to minor losses in flows throu-
gh valves. All valves are considered to be an ideal check-
valve: the valve opens instantaneously for positive flow 
direction, and it closes instantaneously when flow dire-
ction tends to be negative.

Pressure-volume relationships
Veins and arteries models

Veins are modeled as vessels with elastic wall. If we 
define pressure as a pressure difference of inner vessel 
and interstitial pressure, then the pressure-volume rela-
tionship for veins reads:

	 p E V V= −( )0 0 ,	 (3)

where E0  is venous wall elastance and V0  is blood vo-
lume in veins at zero pressure.
Arteries are modeled as vessels with a visco-elastic wall, 
and the pressure volume relationship, according to the 
Voigt model is:

	 p E V V
V
t

= −( )+0 0 η
d
d

,	 (4)

where   is arterial wall resistance.

Models of atria and ventricles

The walls of atria and ventricles contain muscles which 
contract after activation, and in that way they provide 
the driving force for blood flow. We distinguish two sta-
tes of the wall: passive and active. The passive (or dia-
stolic) state is modeled by a nonlinear passive pressure 
– volume relationship ( p Vd ):
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where E0  and V0  are wall elastance and volume at zero 
pressure, respectively, and Vk  is volume constant. In this 
model wall elastance ( Ed ) is volume (or pressure) de-
pendent and thus it holds:
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The activation of muscles in the ventricular or atrial wall 
results in an additionally developed pressure, which sho-
uld be added to passive pressure, resulting in total pre-
ssure:
	 p p p p= + −( )d α s d ,	  (7)

where   is time dependent activation function in the 
range from zero to one ( α=0  denotes passive state and 
α=1  the end of systole). ps  is usually considered to be 
linear ESPVR (End Systolic Pressure-Volume Relation-
ship), and here we added a quadratic term; thus, the 
expression for ps  is:

	 p E V V E VVs = −( )+0 0
2 ,	  (8)

where EV  is constant coefficient.
During systole, when heart muscles contract, activation 
function rises from zero (at the beginning of systole) to 
one (at the end of systole), and after that it goes back to 
zero (relaxation). Here, we defined t0  at the be-
ginning of systole, and we modeled activation function 
with a piecewise function:
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At time t0  (the beginning of the isovolumic contra-
ction) α=0  and its time derivative α α= =d d/ t 0 . 
Isovolumic contraction lasts up to time teivc  (eivc = end 
of isovolumic contraction), when the aortic valve opens 
and activation function, and its time derivative take va-
lues α α α α= =eivc eivc and   , respectively. At the time of 
end-systole ( tes ), interpolation function reaches its maxi-
mum value α=1 , α=0 . After that, activation function 
decreases and at the time of end-ejection ( tee ) it gets a 
value of α α= ee . At tee  time the aortic valve closes, and 
after that the isovolumic relaxation of the left ventricle 
starts. It is broadly accepted that during isovolumic re-
laxation the pressure falls according to the exponential 
law [8]: p p t= −ee exp( / )τ , where   denotes isovolu
mic relaxation time constant, so it is reasonable to accept 
that activation function also follows the exponential law.
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In Eq. (9) five unknown constants (A1 to A5 ) and two 
additional constants ( A6  and A7 ) appear after integrati-
on expressions for II  and III . These seven constants 
are defined by seven conditions of continuity of  ,   
and   as follows:
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Once the unknown constants are resolved, the interpola-
tion function is uniquely defined by the following seven 
parameters: teivc , eivc , eivc , tes , tee , ee  and  .
The described activation function is used for ventricles 
and atria with a note that atrial contraction precedes ven-
tricular contraction by time tav  (also known as PR  in-
terval in ECG ). Panel A  in Fig. 2 shows typical acti-
vation functions for ventricles (black line) and atria (blue 
line), and time derivative of ventricular activation func
tion (red line). Here, we assume the same activation func
tion for the left and for the right ventricle and the same 
activation function for the left and for the right atrium.

Numerical procedure

The mathematical model (the set of 24  ordinary diffe-
rential equations) is integrated by the fourth order Run-
ge-Kutta method. Initially, all flow rates are set at zero, 
and the volumes of all chambers set at values at the 
expected average pressure for each chamber. The inte-
gration is performed over multiple heart periods (usually 
ten periods is enough), in order to achieve cycle-to-cyc-
le periodicity, and the results of the last cycle are taken. 
Integration time step was 1 ms .

Computational results and discussion

Typical results of the described model are presented in 
Fig. 2. The given results are for a normal subject with 
an arterial blood pressure of 120 80/  mmHg , (green line 
in panel B ). Left ventricular and atrial pressures are 
shown in black and blue line, respectively. There is no 
incisure in the arterial pressure wave form that is nor-
mally seen in invasively obtained measurements, becau-
se we did not model aortic valve dynamics. Panel C  
shows velocity profiles through the aortic valve (black 
line), mitral valve (blue line) and pulmonary veins (red 
line). Velocity peaks and profiles are in close agreement 
with the observations obtained by Doppler Echocardio-
graphy in normal subjects. In pulmonary veins flow we 
can see three distinct waves: positive S  and D -wave as 
well as the negative A -wave. Panel D  shows the time 
variation of left ventricular (black line) and atrial volume 
(blue line). It is visible that the range of change of atrial 
volume is much smaller than the ventricular one, since 
the atrium simultaneously fills and empties.

Fig. 3 shows pressure-volume loops for the left atrium 
(top panel) and ventricle (bottom panel). Pressure varia-
tion in the left atrium is within the physiological range 
and the shape of p V-  loop correctly reflects events in 
the left atrium during one cycle. The same is valid for 
the left ventricle.
In the proposed formulation of heart systolic function 
(defined by Eqs. (7) to (9)) the needed parameters can 
be well estimated for each subject specifically, in subjects 
having mitral (and tricuspid) regurgitation. For this pur-
pose, we use blood velocity profiles through the aortic 
( vav ) and mitral ( vmv ) valve obtained by Doppler Echo
cardiography during systole. Since the opening in mitral 
valve during systole is small, the inertial effect and line 
friction losses are negligible ( M 0  and R0 ) and 
minor loss coefficient K1 , it follows from Eq. (2) that

Fig. 2. Results from the proposed model. Panel A : activation 
function for ventricles and atria, and time derivative of left ven-
tricular activation function; Panel B : Time variation of left ven-
tricular, left atrial and systemic artery pressures; Panel C : time 
variation of aortic and mitral valve and pulmonary vein velocities; 
Panel D : Time variation of left ventricular and left atrial volume
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	 p p vLV LA mv
2= +

ρ
2

.	  (10)

In Eq. (10) pLA  is small and can be either neglected or 
replaced by its average value. In Eq. (7) the passive pre-
ssure pd  is much smaller than ps , and after neglecting 
it we have:
	 p t p VLV s LV=α( ) ( ) .	  (11)

We obtain the stroke volume by integration of vav  during 
the ejection time Tej

	 V
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where Dav  is the left ventricular outflow tract diameter, 
also measured by Doppler Echocardiography. End dia-
stolic volume is V V Eed stroke f / , where Ef  is the ejecti-
on fraction which can be estimated by the Teicholz echo 
method. The time variation of VLV  is thenm
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For the given ( )t  and VLV  we calculate ps  from Eq. 
(11) and find the coefficients in Eq. (8) by parabolic 
curve fitting.
There are seven parameters defining the activation fun-
ction, and two of them ( teivc  and tee ) are measured, tes  
should be in the range defined by the time of the maxi-
mum pLV  and tee , and the rest four should satisfy some 
conditions at the end of isovolumic contraction and at 
the beginning of isovolumic relaxation. It follows from 
Eq. (11) that at constant VLV  it holds:
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When we apply Eqs. (11) and (14)  at t t eivc  when 
V VLV ed  and p pLV dia ( pdia  is the arterial diastolic 
pressure) and t t ee   when V V V VLV es ed stroke= = −  and 
p pLV ee  ( pee  is the ventricular aortic valve closing 

pressure), we have
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If we accept exponential decay low for pressure and acti
vation function, then we have two additional relations
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Since we can estimate the left ventricular pressure and 
also its time derivative at t t eivc  and t t ee  from the 
mitral regurgitant flow, we use the above relations to find 
parameters defining activation function.
In the following paper we discuss the method of para-
meter estimation for pulmonary circulation.
There is still more room for improvements of the propo-
sed model, since:

1)	 The model does not include valve dynamics. It is 
known that valve closing causes water hammer, i.e. 
incisure in the pressure profile.

2)	 Also, excursion of the annular planes of tricuspid 
and  mitral valve may have an impact on the heart 
hemodynamic in different phases of cardiac cycle, 
so it would be of interest to include it into the model.

3)	 We use the four-element Windkessel model for the ar-
terial systems. Windkessel models with more elements 
will represent the heart afterload more accurately.

4)	 Coupling of the lumped parameter model for the he-
art and one-dimensional model for arteries would 
provide more information of interest for clinicians.
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Introduction

Understanding the function of the right heart and pulmo-
nary circulation becomes more and more important in the 
treatment of cardiac and pulmonary diseases [1]. He-
modynamic data for examination of pulmonary circulati-
on are usually obtained invasively, what is unacceptable 
in healthy subjects. That is why we need a non-invasive 
clinical method for the estimation of pulmonary circulati-
on function that would be suitable for all subjects (with 
normal function and with cardiorespiratory diseases).
The aim of this work is to develop a lumped parameter 
model of pulmonary circulation and to develop a method 
for parameter identification of this model, based on 
non-invasive (Echocardiography) measurements of ve-
locity profiles through heart valves.

Mathematical model

Fig. 1 schematically shows the right heart, pulmonary 
artery (PA), lungs, pulmonary veins (PV) and left atrium 
(LA) as well as the electrical analogue scheme of the 
proposed lumped model of pulmonary circulation. Resi-
stor R models the total pulmonary vascular resistance, 
capacitors C  and C1  model arterial compliances of 

proximal and distal parts, L  represents the inertial 
effects within arteries,   is the wall resistance of the 
proximal part (the Voigt model) and Z  models the 
impedance of the rest of the system. For the given 
model  parameters and for input pulmonary valve flow 
(Q v Apv pv pv ), it is possible to calculate pulmonary root 
pressure ( pPA ). When pPA  is measured, it is possible to 
find optimal values of model parameters which minimi-
ze the RMS error between measured pPA  and pPA  cal-
culated with the model.

Measurements

By using Doppler Echocardiography, it is possible to 
measure pulmonary valve ( vpv ) and tricuspid regurgitant 
blood velocity ( vtv ). In each particular case, several me-
asurements were recorded and the average data profiles 
were calculated. The “measured” pPA  is obtained from 
unsteady Bernoulli equation

	 p p v K v l
v
tPA RA tv

2
pv
2 pvd

d
= + − −

1
2

1
2

ρ ρ ρ ,	 (1)

where K  and l  are minor loss coefficient and inertial 
length through the pulmonary valve, respectively, pRA  
is the average right atrium pressure, which is estimated 
from the width of vena cava inferior. Similarly, the ave-
rage pressure in pulmonary veins ( pPV ) is estimated 
from the mitral inflow pattern. The stroke volume calcu-
lated from the pulmonary and aortic valve velocity sho-
uld be the same

	 V v A t v A t
T T

stroke pv pv av av

ej ej

d d= =∫ ∫
0 0

,	 (2)

where Tej  is ejection time. Since the aortic valve area 
can be measured more precisely, we use Eq. (2) to cal-
culate Apv .

Parameter identification

First, the pulmonary artery input impedance  
(the ratio of the pressure and flow phasors defined by 
the Fourier series) is calculated, and then pPA

WK5  is obta-
ined based on measured Qpv . This pressure is compared 
with the pPA  defined by Eq. (1), and the error defined as

	 RMSE PA
WK5

PA= −( )
=

∑1 2

1N
p p

i

N

	 (3)

Fig. 1. Schematics of the pulmonary circulation and electrical 
analogue scheme of its lumped mathematical model. RA/RV  = 
right atrium/ventricle, PA/PV = pulmonary arteries/veins, LA  = 
left atrium, tv/pv  = tricuspid/pulmonary valve, Z  = impedance, 

  = circular frequency
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(where N  is the number of points within Tej ) is mini-
mized.

Results and Remarks

The method was applied to an elderly patient with pulmo-
nary arterial hypertension using the following data: Car-
diac Output: 5 l/min, Heart Rate 78 beat/min, pulmonary 
valve diameter Dpv  = 2.73 cm, isovolumic contraction of 
RV time teivc  = 34.4 ms, pRA  = 5 mmHg, pPV  = 10 
mmHg, l D1 53. pv , K1 . Fig. 3 shows the measured 
pulmonary flow, and the comparison of the measured and 
calculated pressure during Tej . pPA

WK5  from the model des-
cribes the “measured” pressure very well, and shows in-
cisure immediately after pulmonary valve closing. Fig. 4 
shows the pulmonary input impedance and the values of 
model parameters that minimize RMSE. The absolute va-
lue of Zin shows its minimum value and zero crossing 
frequency of the phase angle is 5.4 Hz, what is in good 
agreement with the observations of elderly subjects.
The proposed method is capable to accurately identify 
PA model parameters and input impedance of pulmonary 
circulation by using the pressure data from the ejection 
time window only.

The method is limited to the subject with nicely obtai-
nable tricuspid regurgitant velocity and pulmonary valve 
flow.
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Introduction

In lumped models of circulatory system the aortic flow 
is governed by unsteady Bernoulli equation. The aortic 
valve is usually considered as the idealized check valve. 
This means that the valve opens instantaneously for the 
positive flow and closes instantaneously preventing 

the negative (reverse) flow from arteries to the left ven-
tricle. The invasive measurements show that during the 
valve closing phase the negative flow always occurs. 
The negative flow cannot be obtained by the idealized 
valve model. Here we have proposed a model of the 
aortic valve that could also predict the negative aortic 
flow.

Fig. 2. Example of Doppler regurgitant tricuspid (left) and pulmonary 
velocity (right). Red lines are plotted for a digitization purpose

Fig. 3. Velocity through the pulmonary valve (thin red line), “mea-
sured” pulmonary root pressure from Eq. (1) (circles), and pulmonary 
root pressure from the five element lumped model (thick black line)

Fig. 4. Absolute value of pulmonary input impedance (upper part) 
and its phase angle (lower part)
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Mathematical model and numerical method

The characteristic opening and closing phases of the aor-
tic valve are shown in Fig.1. Initially (at the beginning 
of systole) there is no blood flow through the aortic 
valve, and the valve leaflets are at rest (panel A in Fig. 
1). When the left ventricle (LV) pressure exceeds the 
arterial pressure (due to LV contraction), the unsteady 
Bernoulli equation holds

	 M
Q
t

p p
K
A

Q QMd
d lv sa

M

av
L= − − −( )ρ

2 2
2 ,	 (1)

where Q  is the absolute blood flow through the aortic 
root, M  is inertance coefficient, ρ=1050  kg/m3  is 
blood density, Aav  is the aortic root area, plv

M  and psa
M  

are measured left ventricle and arterial pressure, respe-
ctively, K  is minor loss coefficient and QL  is the flow 
rate that defines the volume VL  swept by valve leaflets

	
d
d

L
L

V
t

Q .	 (2)

During the first opening phase, leaflets move into the 
arterial space with Q QL , but there is no orifice. The 
orifice occurs after the leaflets have swept a certain vo-
lume (see panel B in Fig. 1) V A AL0 av av=α π4 / , whe-
re   is the model parameter. During the second opening 
phase the orifice increases from zero to Aav , and leaflets 
sweep an additional volume (see panel C in Fig. 1) 
V A AL1 av av= β π4 / , where   is the model parameter. 
In this phase Q A A QL av= −( )1 / , where A  is the orifice 
area which is related to VL  as A V V V= − ( ) /L L0 L1

2 , 
see [1]. During these two phases the inertance coefficient 
is defined as M A A M= −( )2 0/ av , where M L A0 = ρ / av  
and L  is inertance length. After the flow has reached its 
maximum, the slow leaflets closing phase starts with
Q Q Q A AL av= − max / . During this phase VL  decreases 
from V VL0 L1  to VL0  (see panels D and E in Fig. 1), 
and at a certain moment Q  becomes negative. For ne-
gative Q  the inertance coefficients is defined as
M M=δ 0 , where   is model parameter. At the end of 
this phase (for V VL L0 , see panel E in Fig. 1) leaflets 
coapt and equation (1) does not hold anymore. Measu-
rements suggest that in the last rapid closing phase (after 
the leaflets coapt) the leaflets behave as a dumped osci-
llating system defined by

	
d
d

d
d

2Q
t

Q
t

Q2
2 22 0+ + + =ξ ω ξ( ) ,	 (3)

where   and   are constant parameters. During this 
phase Q QL , and VL  should decrease from VL0  to 
zero. If we introduce another parameter γ ξ ω= / , para-
meters   and   are uniquely defined by VL0  (or  ) 
and  .
For the given measured left ventricular and arterial pre-
ssures and the set of model parameters: Aav , L , K ,  , 
 ,   and  , the set of equation (1) or (3) and (2) is 

solved numerically by the fourth order Runge-Kutta 
method.

Results and conclusions

The proposed model was applied to the measured data 
in humans and pigs. The measured left ventricle and ar-
terial pressure was used as input, and the calculated aor-
tic flow was compared with the measured ones in Figs. 
2 and 3.
There is a very good agreement of the model results with 
the measured ones, with model parameters in physiologi-
cal range. Time varying aortic valve orifice A shows two 
closing phases: a slow one followed by a rapid one as it 

Fig. 1. Scheme of aortic valve opening (panels A to C) and closing 
(panels D to F)

Fig. 2. Model results and measured data [2] in human (model data 
were Aav

2 cm2 9. , L3 cm , K1 , α=0 15. , β=0 4. , 
γ=0 8. , δ=10 )

Fig. 3. Model results and measured data [3] in pig (model data 
were Aav

2 cm1 6. , L1 cm , K1 , α=0 5. , β=0 6. , 
γ=0 5. , δ=3 )
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is in experimental observations. The model indicates that 
the leaflets coapt before the maximal back-flow occurs.
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